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Abstract

In this document we provide a scientific report on the work of the STSM (Short
Term Scientific Mission) TD1207-031216-081719 titled ”K ring topology for energy
distributions networks: the general case” carried out by Dr. Yoram Haddad at the
Carnegie Mellon University, Pittsburgh,USA, hosted by Prof. Jon. We provide first
some administrative details followed by the general purpose of the STSM in section
2. Then, in section 3 and 4 we present a detailed description of the work carried out.
Future collaboration are presented in section 5. Finally confirmation of the mission
achievement by the host can be found in the attached letter.

1 Administrative details

COST Action name: TD1207
STSM TITLE : K ring topology for energy distributions networks: the general case (STSM-
TD1207-031216-081719)
Applicant information- Early career investigator(ECI):
Dr. Yoram Haddad, Jerusalem College of Technology,
21, havaad haleumi street, Jerusalem, Israel. Mail: haddad@jct.ac.il,
phone: +972-54-2074806
Host:
Prof. Jon Peha, Carnegie Mellon University ,
Dept of EPP, Pittsburgh, PA 15213-3890, USA.
Mail: peha@cmu.edu
Dates:
Start date: Dec. 3, 2016
End date: Dec. 9, 2016

2 Purpose of the STSM

The first goal of this STSM was to complete a work initiated last year in a previous STSM
which deal with energy distribution network. Last year we worked on some special case and
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this year we wanted to complete the work with the general case. In addition we wanted to
visit the Center for Wireless and Broadband Networking, discuss other interesting research
problem with Prof Peha, present some last results in a seminar and therefore made some
last dissemination of TD1207 cost action which is close to completion.

3 General description on the work carried out

The general topic is linked to energy distribution. For this purpose we compared this problem
with the somewhat equivalent one in the field of wireless networks. In the last year STSM
we found that it is possible to connect an even number n of sites with n/2 rings, each of one
including 2 sites and the aggregation node with a running time of O(n3). Although this is an
important results, this might not be enough in general cases where there can be constraint
with rings bigger than 3 nodes. Therefore we investigated in this STSM the general case
where we have n/k rings, each one including the aggregation node and k cellular sites; k3.
We did it in two steps. First we investigated the NP completeness of the problem. Secondly,
we found a method to solve the problem. Background on the general topic and the particular
case can be found in the last year’s stsm report and can be provided upon request.

General case
n
k

rings, each one including the aggregation node and k cellular sites; k ≥ 3
In this section, we assume the following:

• n is a multiple of k;

• the network includes n
k

rings, each one including the aggregation node and k cellular
sites;

• for 1 ≤ i ≤ n, pi is the failure probability of the link OMi;

• for 1 ≤ i, j ≤ n, pij is the failure probability of the link MiMj;

• failure events are uncorrelated.

At first, we investigate the relation between the general maximum k-ring division prob-
lem and an NP-Complete problem.

Let Pk(n) be the set of k-combinations of {1, 2, . . . , n}. Given a family of sets F ⊆ Pk(n)
for k ≥ 3, a k-set packing of {1, 2, . . . , n} is a set S ⊆ F such that ∀s1, s2 ∈ S, s1 ∩ s2 = ∅.

The maximum k-set packing problem (MSP) is to find a k-set packing S of {1, 2, . . . , n}
such that for each k-set packing S ′ of {1, 2, . . . , n}, |S| ≥ |S ′|. The corresponding decision
problem (d−MSP ) is a well-known NP-Complete problem [2], [1].
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We define the maximum production [0, 1) weighted k-set packing (MPWSP) as fol-
lowed: given a family F = Pk(n) where n = mk for some m ∈ N and a weight function
w : F → [0, 1), the MPWSP problem is to find a k-set packing S of {1, 2, . . . , n} such that
for each k-set packing S ′ of F ,

∏
u∈S w(u) ≥

∏
u∈S′ w(u).

Let d −MPWSP denote the corresponding decision problem to MPWSP. d −MSP is
a particular case of d−MPWSP with:

• w(X) = 1 for X ∈ F

• w(X) = 0 for X /∈ F

Therefore, d−MPWSP is as least as hard as d−MSP . Thus, d-MPWSP is NP-Hard
(and in fact, d-MPWSP is NP-Complete).

Given an algorithm to solve the MPWSP problem, it can be used to solve the general
maximum k-ring division problem as followed:
let Amax

i1i2...ik
be the highest availability of all the rings including the k nodes i1, i2,..., ik and

the aggregation node:

Amax
i1i2...ik

= max(Aj1j2...jk |j1j2 . . . jk is a permutation of i1i2 . . . ik) (1)

and
ci1i2...ik = log(Amax

i1i2...ik
) (2)

An instance of MPWSP could be constructed by defining a family of sets F = Pk(n) and
a weight function w(i1, i2, , ik) = Amax

i1i2...ik
. Clearly, a solution to the constructed MPWSP

instance yields a solution to the original maximum k-ring division problem.

Reciprocally, let us consider the following particular case:

V = U1 ∪ ... ∪ Uk

|U1| = ... = |Uk| =
n

k
∀u ∈ U1, pu = 0

∀u ∈ U2 ∪ ... ∪ Uk, pu = 1

∀ui ∈ Ui,∀uj ∈ Uj, |j − i| 6= 1→ pij = 1

∀ui ∈ Ui,∀uj ∈ Uj, |j − i| = 1→ pij ∈ [0, 1]

In this particular case, the aggregation node is connected to all the nodes of U1 and no
other node. Every connection between the aggregation node and anyone of the nodes of U1
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Figure 1: Particular case of k-ring division.

is assumed to be free of failure-risk. A node in a given subset Ui can be connected only to
the nodes belonging to the adjacent sets Ui−1 and Ui+1.

Then, the maximization of ci1i2...ik is a k-dimensional matching problem, which is known
to be NP hard [3] for k ≥ 3. Therefore, the general problem is NP hard for k ≥ 3.

4 Approximation method

Since the general maximum k-ring division problem is NP-hard for k ≥ 3, we propose
hereafter an approximation method in order to converge to the solution.

Formalization as an Integer Linear Programming Problem

We can present the k-ring division problem as an ILP: the idea is to define binary variables
which correspond to a k-ring.

P = max
∑

{i1,i2,...,ik}∈Pk(n)

ci1i2...ikxi1i2...ik (3)

subject to ∑
{i1,i2,...,ik}∈Pk(n)

j∈{i1,i2,...,ik}

xi1i2...ik = 1,∀j ∈ {1, 2, . . . , n} (4)

xi1i2...ik ∈ {0, 1},∀{i1, i2, . . . , ik} ∈ Pk(n) (5)

The purpose of this method is to characterize the network topology by binary values:
xi1i2...ik = 1 if the nodes i1, i2, . . . , ik, together with the aggregation node, form a ring, and
xi1i2...ik = 0 else.

Constraints (4) and (5) forces each node j to be in exactly one k-ring.
General ILP is known to be NP-Hard [4]. However, linear programming can be solved in

polynomial time. By replacing constraint (5) in (3) with the constraint:

xi1i2...ik ≥ 0,∀{i1, i2, . . . , ik} ∈ Pk(n) (6)

(also known as LP relaxation) we get a polynomial-time solvable linear program.
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Without loss of generality, we can assume that ci1i2...ik > 0 for each
{i1, i2, . . . , ik} ∈ Pk(n), since we can always add any constant to all the coefficients ci1i2...ik .
Doing that does not change the set of vectors that maximizes the problem, because due to
the constraints, each feasible vector contains exactly n

k
ones and

(
n
k

)
− n

k
zeros. Therefore,

adding K to all the coefficients ci1i2...ik is equivalent to adding the constant K n
k

to the original
objective function.

Lemma 4.1. Assuming ci1i2...ik > 0 for each {i1, i2, . . . , ik} ∈ Pk(n), a vector x which max-
imizes the system

P ′ = max
∑

{i1,i2,...,ik}∈Pk(n)

ci1i2...ikxi1i2...ik (7)

subject to ∑
{i1,i2,...,ik}∈Pk(n)

j∈{i1,i2,...,ik}

xi1i2...ik ≤ 1, ∀j ∈ {1, 2, . . . , n} (8)

xi1i2...ik ∈ {0, 1},∀{i1, i2, . . . , ik} ∈ Pk(n) (9)

is feasible to (3).

Proof. All we need to show is that
∑
{i1,i2,...,ik}∈Pk(n)

j∈{i1,i2,...,ik}
xi1i2...ik = 1,∀j ∈ {1, 2, . . . , n}. Assume

by contradiction that there is a j for which
∑
{i1,i2,...,ik}∈Pk(n)

j∈{i1,i2,...,ik}
xi1i2...ik = 0 (there is no other

possibility since x satisfies constraint (9); this means that there is a node j that is not in
any k-ring). Since n is a multiplier of k, there are k − 1 other nodes that are not in any
k-ring, therefore, a new ring can be added to the sum contradicting the fact that x maximizes
P ′.

Lemma 4.2. Assuming ci1i2...ik > 0 for each {i1, i2, . . . , ik} ∈ Pk(n), a vector x which
maximizes (7) maximizes (3).

Proof. Straight from Lemma (4.1) and from the fact that any feasible vector in (3) is a
feasible vector in (7).

However, not each solution to the relaxation yields a solution to the original problem.
Consider the following example:

n = 6; k = 3 (10)

c124 = c135 = c236 = c456 = 1; all other cijl = 0 (11)
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Then, max
∑

cijlxijl subject to (4), (6) is obtained only for:

x124 = x135 = x236 = x456 =
1

2
; all other xijl = 0 (12)

Conclusion

Availability is maximized when the number of rings is high and the ring size distribution
is regular. In this paper, we show that the partition of a network including an aggregation
node and n cellular sites into n

2
rings, each one including the aggregation node and 2 cel-

lular sites, can be solved in a time of O(n3). Regarding a partition with larger rings, the
problem is similar to a k-set partition problem, which is NP-hard for k ≥ 3. We propose an
approximation method, based on linear programming to accelerate the convergence.

5 Future collaboration

As mentioned by prof Peha in the confirmation host letter, the very fruitful discussion we
had, motivate us to meet again in the future, maybe hosting Prof. Peha in our institute.
In addition we seriously consider the possibility to apply for a bilateral grant in the next
period.

6 Host section

See attached letter
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