Semidefinite Programming: Algorithms, Part |

Angelika Wiegele

April 2014



overview

algorithms for solving semidefinite programs

> interior point methods




overview

algorithms for solving semidefinite programs

> interior point methods

» spectral bundle method




overview

algorithms for solving semidefinite programs

> interior point methods
» spectral bundle method

» bundle method




overview

algorithms for solving semidefinite programs

> interior point methods
» spectral bundle method
» bundle method

> projection methods




semidefinite programs: primal and dual

min (C, X)
(SDP) { st. AX)=0b
X =0



semidefinite programs: primal and dual
min (C, X)

(SDP){ st. A(X)=b
X>=0

i . — > i ,C—AT
min max (C, X)+(b — A(X),y) > max min (b, y)+{X, C = A (y])



semidefinite programs: primal and dual

min (C, X)
(SDP) { st. AX)=0b
X =0

i ; T
min max (C, X)+(b—A(X),y) = max min (b,y)+(X,C—A (y))

max b'y
(DSDP){ st. A'(y)+Z=C
yeR™ Z>0
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strong duality (primal = dual and optima are attained) holds if we
assume that both the primal and the dual problem have strictly
feasible points, i.e. (X, y, Z) feasible and X, Z > 0.

Then it follows from the general Karush-Kuhn-Tucker theory that

AX)=b,X =0
(X,y,Z)isoptimal <= AT(y)-Z=C,Z>0
ZX =0

note: ZX not symmetric — too many equations.
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assumption for rest of talk: (SCQ) holds: both the primal and the

dual problem have strictly feasible points, i.e., 3(X,y, Z) feasible
and X, Z = 0.

Consider, for p1 > 0 the system:

AX)=b,X =0
(CPY{ AT(y)—Z=C,Z=0
ZX = pl

Fundamental Theorem for interior point methods (see e.g. SDP
Handbook, Chapter 10):

(CP) has a unique solution Vi > 0 <= (SCQ) holds.

this solution (X(u)),y(r), Z(p)) forms a smooth curve, called
central path.
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path following methods: follow the central path by finding
points (close to it) for a decreasing sequence of .

primal-dual path-following methods: maintain X, Z = 0 and try to
reach feasibility and optimality. Use Newtons method applied to
perturbed problem ZX = p/ (or variant), and iterate for u — 0.

v

idea: starting at an interior point (X > 0,y,Z > 0), find a search
direction (AX, Ay, AZ) such that

(X,y,Z) + (AX, Ay, AZ)

comes closer to the central path for given p, then reduce p and
iterate.
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interior point methods
generic primal-dual interior point algorithm

Input.
starting point (Xo > 0, yo, Zo > 0), € > 0.
Initialization.
Ho = <X0,Zo>/n, k:=0.
while yix > ¢ or [|A(Xk — b)|leo > or AT (k) — C — Zk|loo > €
determine search direction (AX, Ay, AZy) from a linearized
model for u(uk) such that AXy and AZ, symmetric.
(Xi41, Y15 Zi+1) = (Xie, Yis Zk) + a (DX, Ay, AZy)
with ay such that Xg41 >0, Zky1 >0
k1 = (Xkt1, Zk1)/n
k=k+1
end
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system to be solved to find appropriate (AX, Ay, AZ)

AX + AX) = b
AT(y+Ay)—C=Z+AZ
(X + AX)(Z + AZ) = pl

m + w + n? equations in 2% + m variables (product of
symmetric matrices not symmetric in general) —— overdetermined.
Many variations to fix this:

Replace ZX — ul =0 by
» Z—puX"1=0
» X—pZt=0
> ZX +XZ—2ul =0

— different variants lead to different linearizations.
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interior point methods

At start of iteration: (X = 0,y,Z > 0)

A(X +AX)=b
ATl(y+Ay)—C=2Z2+AZ
(X +AX)(Z+AZ) = pl

Linearized system (CP) to be solved for (AX, Ay, AZ):

A(AX) =rp := b — A(X) primal residue
AT(Ay)—AZ =rp:=Z+C—AT(y) dual residue
ZAX + AZX = pl — ZX path residue

The last equation can be reformulated in many ways, which all are
derived from the complementarity condition ZX = 0.
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interior point methods

direct approach: using the second and third equation to eliminate
AX and AZ, and substituting into the first gives

AZ = AT(Ay) -
AX =puZ ' =X —-Z71AzZX

and the final system in Ay to be solved:
A(ZPAT(AY)X) = pA(Z7Y) = b+ A(Z 7 rpX)
Note that the left hand side is a linear system
A(ZTTAT(By)X) = MAy,

but the m x m matrix M may be expensive to form.
[m. .. number of constraints of (SDP)]
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computational effort:

> explicitely determine Z—! 0o(n%)
» several matrix multiplications O(n?)
> final system of order m to compute Ay O(m?3)

)

» forming the final system matrix O(mn® + m?n?
> line search to determine
Xt :=X+alAX,Z" :=Z+ alAZis at least Oo(n®)

note: effort to form system matrix depends on structure of A(.).
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computational effort:

> explicitely determine Z—! 0o(n%)
» several matrix multiplications O(n?)
> final system of order m to compute Ay O(m?3)

)

» forming the final system matrix O(mn® + m?n?
> line search to determine
Xt :=X+alAX,Z" :=Z+ alAZis at least Oo(n®)

note: effort to form system matrix depends on structure of A(.).
Limitations: n = 1000, m =~ 10000.

See benchmark website [H. Mittelmann] at
http://plato.asu.edu/bench.html
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example: consider the basic SDP relaxation of max-cut, i.e.,

max (L, X)
(MC)< s.t. diag(X)=¢e
X =0

X...n X n matrix, and n simple equations x;; = 1.

AZ = Diag(Ay), AX =-Z'AZX+puZ71-X

and symmetrize
solve for Ay

diag(Z 'Diag(Ay)X) = pdiag(Z71) — e

(Z7'o X)Ay = pdiag(Z71) — e



mcpsd.m

function [X,y,iter ,secs] = mcpsd(L,digits);

% input: L ... symmetric matrix

% output: X ... primal matrix

% y ... dual variables

% solves: max tr(LX): diag(X)=e, X psd

% min e'y: Diag(y)—L=Z psd

% call: [X,y,iter ,secs] = mcpsd(L, digits);

% f. rendl, 2/99
start=cputime;
% initialize data

[n] = size(L,1);
if nargin = 1; digits = 5.5; end;



mcpsd.m

e = ones(n,1);

X = diag(e);

y = sum(abs(L))’" + 1.;
Z = diag(y) — L;

phi = e’ % y;
psi = L(:)" * X(:);
delta = phi—psi;

)

mu=2Z2(:)" % X(:)/(4x%n
=1; iter = 0;

alphap = 1; alphad



mcpsd.m

while delta > max([abs(phi) 1]) = 10°(—digits)
% while duality gap too large

Zi = inv(Z); iter = iter + 1;
dzi = diag(Zi);

Zi = (Zi + Zi')/2;

% solve for dy:

dy = (Zi .« X) \ (mu % dzi — e);
tmp = zeros(n);

for j=1:n
tmp(:,j) = Zi(:,j)xdy(j);
end;

dX = —tmp * X + muxZi —X;
dX = (dX + dX")/2; % symmetrize



mcpsd.m

% find steplengths alphap and alphad
alphap 1;
[Zi, posdef] = chol(X + alphap x dX);
while posdef "= 0,

alphap = alphap * .8;

[Zi, posdef] = chol(X + alphap * dX);
end;

% stay away from boundary
if alphap < 1, alphap
X = X 4 alphap * dX;

alphap * .95; end;



mcpsd.m

alphad = 1;
dZ = sparse(diag(dy
[Zi, posdef] = chol(
while posdef "= 0;
alphad = alphad *x .8;
[Zi,posdef] = chol(Z + alphad * dZ);
end;
if alphad < 1, alphad = alphad * .95; end;

)):
Z + alphad x dZ);

% update
y =y + alphad x dy;
Z =7 + alphad x dZ;



mcpsd.m

mu = X(:)'x Z(:)/(2%n);

% reduce mu, if stepsize good:

if alphap 4+ alphad > 1.6
mu = mu *x .75;

end;

if alphap + alphad > 1.9
mu=mu/(l.+.1 % iter);

end;

phi = e’ x vy;
psi = L(:) "« X(:);
delta = phi—psi;

disp([iter alphap alphad logl0(delta)
end: % end of main loop

secs = cputime — start;

psi

phi]);



interior point methods

run times for various graphs when solved using mcpsd.m

n seconds
200 2
400 7
600 16
800 35

1000 80
1500 260

2000 500
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some implementations of interior point methods:
> SeDuMi [J. Sturm 98]: works under Matlab and Octave
» SDPT3 [K. Toh, M. Todd, R. Tutuncu]: Matlab
» CSDP [B. Borchers]: C-library

» SDPA [K. Fujisawa, M. Fukuda, Y. Futakata, K. Kobayashi,
M. Kojima, K. Nakata, M. Nakata, M. Yamashita, 95-14]:
C-libary, Matlab-interface
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some implementations of interior point methods:
> SeDuMi [J. Sturm 98]: works under Matlab and Octave
» SDPT3 [K. Toh, M. Todd, R. Tutuncu]: Matlab
» CSDP [B. Borchers]: C-library

» SDPA [K. Fujisawa, M. Fukuda, Y. Futakata, K. Kobayashi,
M. Kojima, K. Nakata, M. Nakata, M. Yamashita, 95-14]:
C-libary, Matlab-interface

example: solve max-cut relaxation from before using SeDuMi



mcpsd.m

function [x,y,info] = mcpsd(L);

% solve basic max—cut relaxation using SeDuMi
% input: Laplace matrix L

% call: [x,y,info] = mcpsd(L);

n = size(L,1); % number of nodes

% n constraints: diag(X) =

[]:
for i=1:n
B = sparse(i,i,1,n,n);
At(:,i) = B()
end;

b = ones(n,1);



mcpsd.m

% objective function:
% max <L,X> = min —vec (L) 'xvec(X)
c=-L(:);

% semidefiniteness constraint
K.s = [n];

[x,y,info] = sedumi(At,b,c,K);
y = -y,



interior point methods

example: random SDP where each A; is nonzero only on randomly
chosen 4 x 4 submatrix, main diagonal is 0; solved using SeDuMi.

n m seconds
100 1000 11
100 2000 159
200 2000 151
200 5000 2607
300 5000 2395

No attempt with larger m due to memory and time.
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example: random SDP where each A; is nonzero only on randomly
chosen 4 x 4 submatrix, main diagonal is 0; solved using SeDuMi.

n m seconds
100 1000 11
100 2000 159
200 2000 151
200 5000 2607
300 5000 2395

No attempt with larger m due to memory and time.

more results: check out benchmark website [H. Mittelmann] at
http://plato.asu.edu/bench.html
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widely used format: sdpa format
max-cut relaxation for

-7 0 4 0 3

0 7 -7 0 O

L= 4 -7 5 0 -2
0 0 00 O

3 0 -2 0 -1



5 = mDIM
1 = nBLOCK

bLOCKsTRUCT

11111

5

0111 -7
01134
01153
01227

widely used format: sdpa format

max-cut relaxation for

|

0123 -7
01335
0135 -2
0155 -1
11111
21221
31331
41441
51551

3
0
-2
0
-1

0 0
7 0
-7 5 0
0 0O
0 -2 0

—7
0
4
0
3



interior point methods

interior point methods summarized

> based on Newton's method

» currently best convergence results

» many different kind of solvers (SeDuMi, CSDP, SDPA,
SDPT3, etc.) see website of benchmarks by H. Mittelmann

» computational effort depends strongly on:

» matrix dimension n
» number of constraints m (in each iteration, one needs to solve
a dense linear system of order m).

» limit of interior point methods: n =~ 1000, m ~ 10 000



