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Semidefinite Optimization

Semidefinite optimization, or semidefinite programming (SDP), refers
to the problem of optimizing a linear function over the intersection of
the set of symmetric positive semidefinite matrices with an affine
space.

The simplest example of semidefinite optimization is the familiar linear
programming (LP) problem:

max 〈c,x〉 min 〈b,y〉

s.t. 〈ai ,x〉 = bi , i = 1, . . . ,m s.t. z =
m∑

i=1
yiai − c

x ≥ 0 z ≥ 0

where 〈a,b〉 = aT b.
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Semidefinite Optimization (ctd)

The general SDP problem has the form:

max 〈C,X〉 min 〈b,y〉

s.t. 〈Ai ,X〉 = bi , i = 1, . . . ,m s.t. Z =
m∑

i=1
yiAi − C

X � 0 Z � 0

where 〈A,B〉 = A • B = trace AB =
∑

i,j AijBij ,
all matrices are square and symmetric (Sn),
and X � 0 denotes that X is positive semidefinite.
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Importance of SDP

SDP is an important class of optimization problems for several
reasons:

1 Because SDP problems are solvable in polynomial time, any
problem that can be expressed using SDP is also solvable in
polynomial time.

2 SDP problems can be solved efficiently in practice. This can be
done by using one of the software packages available, or
alternatively by implementing a suitable algorithm.

3 SDP can be used to obtain tight approximations for hard problems
in integer and global optimization.

4 SDP problems are useful for a wide range of practical applications
in areas such as control theory, portfolio optimization, truss
topology design, and principal component analysis.
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Conic Terminology

Both the non-negative orthant

N = {x ∈ Rn : xi ≥ 0 for all i}

and the set of symmetric positive semidefinite (psd) matrices

P = {X ∈ Sn : λi(X) ≥ 0 for all i}

are pointed closed convex cones.

A set K is
a cone if x ∈ K, then αx ∈ K for all α ≥ 0
convex if x , y ∈ K, then αx + (1− α)y ∈ K for all α ∈ (0,1)

closed if it contains its boundary
pointed / proper if K ∩−K = {0}
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Interior and Boundary of P

The interior of P is the set of positive definite (pd) matrices:

{X ∈ Sn : λi(X) > 0 for all i}

and the boundary of P are the singular psd matrices.
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Algebraic Characterizations
There are many ways to express the psd (pd) condition on a matrix X.
A few of them are:

X � 0 ⇔ λi(X) ≥ 0 for all i (λi(X) > 0)
⇔ vT Xv ≥ 0 for all v ∈ Rn (vT Xv > 0)

⇔ ∃ X
1
2 ∈ Sn s.t. X

1
2 X

1
2 = X (& X

1
2 is invertible)

⇔ ∃ w1,w2, . . . ,wn s.t. Xij = wT
i wj (& w1, . . . ,wn lin. indep.)

If X1 � 0 then
[

X1 X2
XT

2 X3

]
� 0 (� 0)

⇔ X3 − XT
2 X−1

1 X2 � 0 (X3 − XT
2 X−1

1 X2 � 0)

Sufficient (but not necessary) condition for psd (pd):

Xii ≥
∑
j 6=i

|Xij | for all i ⇒ X � 0 (Xii >
∑
j 6=i

|Xij | ⇒ X � 0)
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The Second-Order Cone (or Lorentz Cone)

An (n + 1)-dimensional second-order cone (SOC) is the set of all

vectors (x0, x1, . . . , xn) that satisfy x0 ≥
√

x2
1 + . . .+ x2

n ,
or equivalently

SOC = {x ∈ Rn+1 : x2
0 − x2

1 − . . .− x2
n ≥ 0, x0 ≥ 0}.

The SOC is also a pointed closed convex cone, and second-order
cone programming (SOCP) consists of optimizing a linear function
subject to linear equality constraints and one or more SOC constraints.
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The Lorentz Cone in 3 Dimensions
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Relationships Between N , P, and the SOC
The SOC constraint

x2
0 − x2

1 − . . .− x2
n ≥ 0, x0 ≥ 0

is equivalent to the positive semidefinite constraint
x0 x1

x0 x2
x0 x3

. . .
...

x1 x2 x3 · · · x0

 � 0

Furthermore, the k -dimensional non-negative orthant is the direct
(Cartesian) product of k 1-dimensional SOC cones.

Hence, SOCP is a special case of SDP;
and LP is a special case of SOCP.
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A Fundamental Structure: The Elliptope

The
(n

2

)
-dimensional elliptope (or spectrahedron) is the feasible set of

the SDP problem
min 〈C,X〉
s.t. diag(X) = e

X � 0.

where diag(X) denotes a vector with the diagonal elements of X ,
and e is the vector of all ones.

In other words, the elliptope of dimension
(n

2

)
is the set of all symmetric

n × n matrices that are psd and have ones on the diagonal.

This special set comes up in many applications of SDP.
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Small Elliptopes

If X ∈ S2, we obtain the elliptope in R1:(
1 x
x 1

)
� 0⇒ x ∈ [−1,1].

If X ∈ S3, we obtain the elliptope in R3:
x

y
z

 ∈ R3 :

1 x y
x 1 z
y z 1

 � 0

 .

We can visualize this set in R3.
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The Elliptope in 3 Dimensions
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Geometry of the Elliptope

The vertices of the elliptope correspond to the psd matrices with all
entries equal to ±1.

For n = 2, we have two vertices:(
1 1
1 1

)
and

(
1 −1
−1 1

)
.

For n = 3, there are four vertices:(
1 1 1
1 1 1
1 1 1

)
,

(
1 1 −1
1 1 −1
−1 −1 1

)
,

(
1 −1 1
−1 1 −1

1 −1 1

)
,

(
1 −1 −1
−1 1 1
−1 1 1

)
.
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Geometry of the Elliptope

Unlike a polyhedron, the elliptope has extreme points that are not
vertices.

This occurs first when n = 3: the matrix1 1
2

1
2

1
2 1 1

2
1
2

1
2 1


is not a vertex, but it is an extreme point of the elliptope since it cannot
be expressed as a convex combination of the four vertices.
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The Dual Cone

For any convex cone K, the dual cone K∗ is defined as

K∗ := {y ∈ Rn : 〈x,y〉 ≥ 0 ∀x ∈ K}.

We have that:
For any cone K, K∗ is a closed convex cone;
The non-negative orthant is self-dual (obvious);
The SOC is self-dual, by the Cauchy-Schwarz inequality;
The psd cone is self-dual, by Fejer’s Theorem:

X � 0⇔ X • Z ≥ 0 for all Z � 0
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Other Important Examples of Cones of Matrices

The completely positive cone:

C := {X ∈ Sn : X =
k∑

i=1

vivT
i ,vi ≥ 0}

The copositive cone:

C∗ := {X ∈ Sn : vT Xv ≥ 0 for all v ≥ 0}

The doubly non-negative cone:

D := P ∩N

and its dual
D∗ = P ⊕N



Introduction to SDP Maximum-Cut Polynomial Optimization

Relationships Between the Cones for n ≥ 5

N P D∗C D C∗
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Conic Optimization Duality
Consider the general conic optimization problem

min 〈c,x〉
s.t. 〈ai ,x〉 = bi , i = 1, . . . ,m ← yi

x ∈ K

The Lagrangian dual is:

max
y

{
min
x∈K
〈c,x〉+

m∑
i=1

yi (bi − 〈ai ,x〉)

}
= max

y

{
m∑

i=1

biyi + min
x∈K
〈c−

m∑
i=1

yiai ,x〉

}

The inner minimization is unbounded below unless

〈c−
m∑

i=1

yiai ,x〉 ≥ 0 for all x ∈ K

in which case the minimum is zero.
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Conic Optimization Duality (ctd)

Since the outer problem is a maximization problem, it is therefore
equivalent to

max
m∑

i=1
biyi

s.t. c−
m∑

i=1
yiai ∈ K∗

which is equivalent to

max
m∑

i=1
biyi

s.t.
m∑

i=1
yiai + z = c

z ∈ K∗

This is the dual cone optimization problem.
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Why Focus on Semidefinite Optimization?

Convexity is of paramount importance in optimization.

Convex optimization problems have many of the advantageous
properties of LP, including:

an elegant and powerful duality theory, and
polynomial-time solvability using interior-point methods (IPMs) –
but with a major caveat.
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Self-Concordant Barrier Functions

Use of an IPM requires a self-concordant barrier function for the cone
underlying the feasible set.

Although such a function (the Universal Barrier Function) exists for a
large variety of convex cones, it is very hard to compute in general.

However, efficient self-concordant barriers exist for symmetric cones.
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Symmetric Cones

Symmetric cones arise from direct products of the following five types
of cones:

SOC
symmetric psd matrices over the reals (psd cone)
Hermitian psd matrices over the complex numbers (can be
expressed as a psd cone of 2 times the size);
Hermitian psd matrices over the quaternions (can be expressed
as a psd cone of 4 times the size);
One exceptional 27-dimensional cone (3× 3 Hermitian psd
matrices over the octonions).

Thus, SDP is (basically) the most general class of symmetric cones,
and these are the cones over which we know how to optimize in
polynomial time.
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Solving SDP Problems
Numerous algorithms have been proposed (and, in most cases,
implemented) for solving SDP problems:

Ellipsoid method
Interior-point methods (IPMs)
Spectral bundle method
Low-rank method
Augmented Lagrangian methods
Semi-infinite LP methods
Boundary point method
and more...

The first two are the only ones with provable polynomial-time
convergence.
IPMs are the only ones that are polynomial-time and efficient in
practice.
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IPM variants

Within the framework of IPMs, many variants have been proposed,
analyzed, and implemented:

Path-following
Infeasible
Potential reduction
Dual scaling
Primal-dual completion-based
and more...

Modern LP software contains both simplex and interior-point solvers,
often several variants for each.

Angelika Wiegele will speak about algorithms for SDP this afternoon.
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SDP Duality
Consider a primal-dual SDP pair in the following form:

min 〈C,X〉 max 〈b,y〉

s.t. 〈Ai ,X〉 = bi , i = 1, . . . ,m s.t.
m∑

i=1
yiAi + Z = C

X � 0 Z � 0

Like in LP, we have a weak duality theorem.

Theorem
If X̃ is primal feasible and (ỹ, Z̃) is dual feasible then 〈C, X̃〉 ≥ 〈b, ỹ〉.

The proof is just like for LP:

〈C, X̃〉 − 〈b, ỹ〉 = 〈Z̃, X̃〉+
m∑

i=1

ỹi〈Ai , X̃〉 −
m∑

i=1

ỹi〈Ai , X̃〉 = 〈Z̃, X̃〉 ≥ 0.

The difference between the primal and dual objective values for
feasible solutions X̃ and (ỹ, Z̃) is called the duality gap.
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Beyond weak duality, however, the picture differs. For example, for LP,
if the primal is feasible and bounded, or
if the dual is feasible and bounded,

then both primal and dual have optimal solutions, and the duality gap
is zero at optimality.

For SDP, the situation is more complicated, as the following two
examples demonstrate.
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Zero Duality Gap Without Attainment
Consider the SDP problem

inf X11

s.t.
(

X11 1
1 X22

)
� 0.

It is feasible and bounded yet the optimal value zero cannot be

attained because
(

0 1
1 X22

)
is not psd for any value of X22.

The dual problem is

max y1

s.t.
(

1 0
0 0

)
− y1

(
0 1

2
1
2 0

)
� 0

or equivalently
max y1

s.t.
(

1 − y1
2

−y1
2 0

)
� 0

with y∗1 = 0 optimal. (In fact, y1 = 0 is the only feasible solution.)
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Positive Duality Gap
The SDP problem

min X11
s.t. X11 + 2X23 = 1

X22 = 0X11 X12 X13
X12 X22 X23
X13 X23 X33

 � 0

has optimal value 1.
The dual SDP problem is

max y1

s.t.

1 0 0
0 0 0
0 0 0

− y1

1 0 0
0 0 1

2
0 1

2 0

− y2

0 0 0
0 1 0
0 0 0

 =

1− y1 0 0
0 −y2 − y1

2
0 y1

2 0

 � 0

and the psd constraint implies y1 = 0 for every feasible solution,
hence the optimal value is 0. (Take e.g. y∗1 = 0, y∗2 = 0.)
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Constraint Qualification
To avoid this kind of difficulty and obtain a strong duality result for SDP,
we must require that the primal-dual SDP pair satisfy a constraint
qualification (CQ).

This is a standard concept in non-linear optimization. Arguably the
most commonly used CQ is Slater’s CQ.

Definition
Slater’s CQ holds if both primal and dual have feasible positive definite
matrices.

We then have the following result.

Theorem
Under Slater’s CQ, both primal and dual have optimal solutions, and
the duality gap is zero at optimality.
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Verifying Slater’s CQ

Example
min 〈C,X〉 max 〈e,y〉

s.t. 〈eieT
i ,X〉 = 1, i = 1, . . . ,m s.t.

m∑
i=1

yieieT
i + Z = C

X � 0 Z � 0
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Optimality Conditions
From the weak duality of SDP, we have that the duality gap equals

〈C, X̃〉 − bT ỹ = 〈Z̃, X̃〉 ≥ 0.

Since both X and Z are psd, 〈X,Z〉 = 0 implies XZ = ZX = 0, thus we
obtain the sufficient optimality conditions:

〈Ai ,X〉 = bi , i = 1, . . . ,m, (primal feasibility)
X � 0

Z +
m∑

i=1
yiAi = C (dual feasibility)

Z � 0
XZ = 0 (complementarity)

If Slater’s CQ holds, they are also necessary for optimality.
These optimality conditions can be used as the starting point for
defining IPMs to solve SDP problems.
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A Key Result in the History of SDP:
The Goemans-Williamson Approximation Algorithm
for the Maximum-Cut (Max-Cut) Problem
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The Max-Cut Problem
Given a graph G = (V ,E) and weights wij for all edges (i , j) ∈ E , find
an edge-cut of maximum weight, i.e. find a set S ⊆ V s.t. the sum of
the weights of the edges with one end in S and the other in V \ S is
maximum.
We assume wlog that wii = 0 for all i ∈ V , and that G is complete
(assign wij = 0 if edge ij 6∈ E).
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Standard Integer LP Formulation

max
n∑

i=1

n∑
j=i+1

wijyij

s.t. yij + yik + yjk ≤ 2,1 ≤ i < j < k ≤ n
yij − yik − yjk ≤ 0,1 ≤ i < j ≤ n, k 6= i , j
yij ∈ {0,1},1 ≤ i < j ≤ n

where

yij =

{
1 if edge ij is cut
0 otherwise,

yij = yji , and wij denotes the weight of edge ij .

This formulation is the basis for a highly successful branch-and-cut
algorithm for solving spin glass problems in physics (Liers, Jünger,
Reinelt and Rinaldi (2005)).
The solver can be accessed online at the Spin Glass Server:

http://www.informatik.uni-koeln.de/spinglass/

http://www.informatik.uni-koeln.de/spinglass/
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Quadratic Formulation of Max-Cut

Whereas the ILP formulation is edge-based, we use a node-based
quadratic formulation.

Let the vector v ∈ {−1,+1}n represent any cut in the graph via
the interpretation that the sets {i |vi = +1} and {i |vi = −1} specify
the partition.
Then max-cut may be formulated as:

max
n∑

i=1

n∑
j=i+1

wij

(
1−vi vj

2

)
s.t. v2

i = 1, i = 1, . . . ,n.
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The Basic Semidefinite Relaxation of Max-Cut

Consider the change of variable X = vvT ,v ∈ {±1}n.
Then Xij = vivj and max-cut is equivalent to

max 〈Q,X〉
s.t. diag(X) = e

rank(X) = 1
X � 0,

where Q = 1
4 (Diag(We)−W).

Removing the rank constraint, we obtain the basic SDP relaxation of
max-cut.

Question: How good is this SDP relaxation?
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Goemans and Williamson (1995):
0.878-approximation algorithm

Theorem (Goemans and Williamson (1995))

If wij ≥ 0 for all edges ij, then

max-cut opt value
SDP relax opt value

≥ α

where α := min
0≤ξ≤π

2
π

ξ
1−cos ξ ≈ 0.87856.

This performance ratio is best-possible if the Unique Games
Conjecture is true.
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Goemans and Williamson (1995):
0.878-approximation algorithm (ctd)

In fact, Goemans and Williamson proved a stronger result:
they described a randomized algorithm that

from an optimal solution X∗ of the SDP relaxation
generates a cut with expected weight ≥ α (SDP relax opt value).
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Using the fact that X∗ � 0⇒ ∃ `1, `2, . . . , `n s.t. Xij = `Ti `j
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Since the optimal max-cut value is at least the expected value of this
cut, the theorem follows.
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Constant Relative Accuracy Estimate
With no restriction on the edge weights, Nesterov (1998) proved
constant relative accuracy estimates for the basic SDP bound.
Define

µ∗ = max vT Qv µ∗ = min vT Qv
s.t. v ∈ {−1,1}n s.t. v ∈ {−1,1}n

ψ∗ = max 〈Q,X〉 ψ∗ = min 〈Q,X〉
s.t. diag(X) = e, X � 0 s.t. diag(X) = e,X � 0

and
s(β) := β ψ∗ + (1− β)ψ∗, β ∈ [0,1].

Theorem (Nesterov (1998))
Without any assumption on the matrix Q,

|s( 2
π )− µ∗|
µ∗ − µ∗

≤ π

2
− 1 <

4
7
.
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Some Recent Highlights
There has been tremendous activity on SDO and max-cut since 1995.
Some recent computational highlights:

The SDP relaxation, augmented with selected inequalities, is a
key ingredient of the max-cut solver Biqmac (Rendl, Rinaldi and
Wiegele (2007)):

http://biqmac.uni-klu.ac.at/

The generalization of the SDP relaxation to max-k -cut works very
well on dense graphs with branch-and-cut and the bundle method
(Anjos, Ghaddar, Hupp, Liers, Wiegele (2013)).

This basic relaxation of max-cut is also the basis for solution
approaches to other problems. Two recent examples are:

Min-bisection problems (Armbruster, Helmberg, Fügenschuh and
Martin (2011))
Single- and multi-row facility layout problems (Anjos and several
co-authors, particularly Hungerländer)

http://biqmac.uni-klu.ac.at/
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A Very Brief Introduction to Polynomial Optimization...

... with a focus on binary problems.
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Polynomial Optimization

Polynomial optimization problems (POPs) consist of optimizing a
multivariate polynomial subject to multivariate polynomial constraints:

z = sup f (x)
s.t. gi(x) ≥ 0 i = 1, . . . ,m.

Numerous classes of problems can be modelled as POPs, including:
Linear Problems
Quadratic Problems (Convex / Non-convex)
Mixed-Binary Problems

xi ∈ {0,1} ⇔ x2
i − xi = 0

Thus, solving POPs is in general NP-hard.
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General POP Perspective
Given a general POP problem:

(POP) z = sup f (x)
s.t. gi(x) ≥ 0 i = 1, . . . ,m.

If λ is the optimal value of POP, then POP is equivalent to

inf λ
s.t. λ− f (x) ≥ 0 ∀x ∈ S := {x : gi(x) ≥ 0, i = 1, . . . ,m}

which we rewrite as
inf λ
s.t. λ− f (x) ∈ Pd (S)

where
Pd (S) = {p(x) ∈ Rd [x ] : p(s) ≥ 0 for all s ∈ S}

is the cone of polynomials of degree ≤ d that are non-negative over S.

Main question:
How to relax the condition λ− f (x) ∈ Pd (S)?



Introduction to SDP Maximum-Cut Polynomial Optimization

Conic Relaxations of POP

We relax λ− f (x) ∈ Pd (S) to

λ− f (x) ∈ K for a suitable cone K ⊆ Pd (S).

Then the conic optimization problem

inf λ
s.t. λ− f (x) ∈ K

provides an upper bound for the original problem.

• The choice of K is key to obtaining good bounds on the problem

• Optimizing over K should (must?) be tractable
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Example: Application to Max-cut

The formulation

max xT Qx

s.t. x2
i = 1, i = 1, . . . ,n

can be recast as

min λ

s.t. λ− xT Qx ∈ P2

(
{x : x2

i = 1, i = 1, . . . ,n}
)

The r = 2 SOS relaxation is precisely the dual SDP problem of the
basic SDP relaxation.
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SOS Approach - Lasserre (2001), Parrilo (2000)
For each r > 0, define the approximation Kr ⊆ Pd (S) as

Kr :=

(
SOSr +

m∑
i=1

gi(x)SOSr−deg(gi )

)
∩ Rd [x ]

where SOSd denotes the cone of real polynomials of degree at most d
that are SOSs of polynomials, and Rd [x ] denotes the set of
polynomials in the variables x of degree at most d .

The corresponding relaxation can be written as

(Lr ) zr = inf
λ,σi

λ

s.t. λ− f (x) = σ0(x) +
∑m

i=1 σi(x)gi(x)
σ0(x) is SOS of degree ≤ r
σi(x) is SOS of degree ≤ r − deg(gi(x)), i = 1, . . . ,m.



Introduction to SDP Maximum-Cut Polynomial Optimization

Solving the SOS Relaxation

For each r , the relaxation (Lr ) can be cast as an SDP problem, since
σ(x) is a SOS of degree 2k if and only if

σ(x) =



1
...
xi
...

xixj
...∏
|k |

x



T

M



1
...
xi
...

xixj
...∏
|k |

x


with M � 0.

Note that SOSd = SOSd−1 for every odd degree d .
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Lasserre’s Hierarchy for a Small Example
To solve

supx ,y −(x − 1)2 − (y − 1)2

s.t. x2 − 4xy − 1 ≥ 0
yx − 3 ≥ 0
y2 − 4 ≥ 0
122 − (x − 2)2 − 4(y − 1)2 ≥ 0

r 2 4 6
# vars 14 73 245
# constraints 6 15 28
Bound 9.40 36.06 51.73

There is no need to run relaxations for r > 6, because an optimal
solution (and optimality certificate) can be extracted from the solution
to the SDP problem L6.
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Assessing the SOS Relaxation

Good news: Under mild conditions, zr → z.
Bad news: For a problem with n variables and m inequality

constraints, the size of the relaxation is:
One psd matrix of dimension

(n+r
r

)
;

m psd matrices, each of dimension
(n+r−deg(gi )

r−deg(gi )

)(n+r
r

)
linear constraints.

To overcome the size blow-up one may exploit the structure (sparsity,
symmetry, convexity) to get smaller SDP programs.
Many authors have contributed here: Gatermann, Helton, Kim, Kojima,
Lasserre, Netzer, Nie, Parrilo, Pasechnik, Riener, Schweighofer,
Sotirov, Theobald, etc.
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One idea: Improve the bound without growing r

Recall
(POP) z = sup f (x)

s.t. x ∈ S := {x : gi(x) ≥ 0, i = 1, . . . ,m}

(Lr (G)) zr (G) = inf
λ,σi

λ

s.t. λ− f (x) = σ0(x) +
∑m

i=1 σi(x)gi(x)
σ0(x) is SOS of degree ≤ r
σi(x) is SOS of degree ≤ r − deg(gi(x)),

i = 1, . . . ,m.

Observe that
(Lr ) is defined in terms of the functions used to describe S
Call this set G = {gi(x) : i = 1, . . . ,m}

Ghaddar, Vera, Anjos (2011): Improve the description of S by growing
G in such a way that the bound obtained from Lr improves for fixed r .
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Another idea: Pure SOC Relaxations

For binary quadratic POPs, it is possible to obtain purely second-order
cone (SOC) relaxations.

Let us separate the various types of constraints as follows:

max xT Qx + pT x
s.t. aT

j x = bj ∀j ∈ {1, . . . , t}
cT

j x ≤ dj ∀j ∈ {1, . . . ,u}
xT Fjx + eT

j x = kj ∀j ∈ {1, . . . , v}
xT Gjx + hT

j x ≤ lj ∀j ∈ {1, . . . ,w}
xi ∈ {−1,1} ∀i ∈ {1, · · · ,n}
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Useful Lemma

x ∈ {−1,1}n ⇒ ‖x‖2 = n.

This leads to the following specialized lemma that we will use:

Lemma
If f (x) is a polynomial of degree one and B′ := {x : ‖x‖2 = n}, then

f (x) ∈ P1(B′) if and only if f (x) = f T
(√

n
x

)
with f ∈ SOCn+1.
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First Relaxation

Using the previous lemma, we obtain (BQPPSS):

min λ

s.t. λ− (xT Qx + pT x) =
(
1 xT

)
M
(

1
x

)
+
∑

i

(1 + xi)α
T
i

(√
n

x

)
+
∑

i

(1− xi)β
T
i

(√
n

x

)
+
∑

i

γi(1− x2
i )

+
∑

j

δj(x)(bj − aT
j x) +

∑
j

(dj − cT
j x)ηT

j

(√
n

x

)
+
∑

j

θj(kj − xT Fjx − eT
j x) +

∑
j

ξj(lj − xT Gjx − hT
j x),

M ∈ Sn+1
+ , αi , βi , ηj ∈ Ln+1, δj ∈ R1[x ], γi , θj ∈ R, ξj ∈ R+
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Second (Improved) Relaxation
Adding products of linear constraints strengthens further: (BQPPSS+)

min λ s.t. λ− (xT Qx + pT x) =
(
1 xT )M

(
1
x

)
+
∑

i

(1 + xi)α
T
i

(√
n

x

)
+
∑

i

(1− xi)β
T
i

(√
n

x

)
+
∑

i

γi(1− x2
i )

+
∑

j

δj(x)(bj − aT
j x) +

∑
j

(dj − cT
j x)ηT

j

(√
n

x

)
+
∑

j

θj(kj − xT Fjx − eT
j x) +

∑
j

ξj(lj − xT Gjx − hT
j x)

+
∑
i,k

σik (dk − cT
k x)(1 + xi) +

∑
i,k

µik (dk − cT
k x)(1− xi)

+
∑
k≤l

νkl(dk − cT
k x)(dl − cT

l x) +
∑
i≤j

τij(1− xi)(1− xj)

+
∑
i≤j

ωij(1 + xi)(1 + xj) +
∑

i,j

φij(1− xi)(1 + xj)

M ∈ Sn+1
+ , αi , βi , ηj ∈ Ln+1, γi , θj ∈ R, ξj , σik , µik , νkl , τij , ωij , φij ∈ R+
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Pure SOC Relaxation
We can relax (BQPPSS) by removing the SOS term.
In the absence of the SOS term, the valid inequalities

−1 ≤ xixj ≤ 1

are no longer satisfied, and may strengthen the relaxation (BQPPSOC):
min λ s.t. λ− (xT Qx + pT x) =∑

i

(1 + xi )α
T
i

(√
n

x

)
+
∑

i

(1− xi )β
T
i

(√
n

x

)
+
∑

i

γi (1− x2
i )

+
∑

j

δj (x)(bj − aT
j x) +

∑
j

(dj − cT
j x)ηT

j

(√
n

x

)
+
∑

j

θj (kj − xT Fjx − eT
j x) +

∑
j

ξj (lj − xT Gjx − hT
j x)

+
∑
i<j

ν+ij (1 + xixj ) +
∑
i<j

ν−ij (1 + xixj )

αi , βi , ηj ∈ Ln+1, δj ∈ R1[x ], γi , θj ∈ R, ξj , ν
+
ij , ν

−
ij ∈ R+
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Lasserre Relaxation for BQPPs
Lasserre introduced SDP relaxations for binary polynomial programs
of the form:

Γr :=

(
Ψr+2 +

∑
i

(1− x2
i )Ψr +

∑
i

(x2
i − 1)Ψr +

∑
i

(bi − aT
i x)Ψr

+
∑

i

(aT
i x − bi )Ψr +

∑
i

(di − cT
i x)Ψr +

∑
i

(ki − xT Fix − eT
i x)Ψr

+
∑

i

(xT Fix + eT
i x − ki )Ψr +

∑
i

(li − xT Gix − hT
i x)Ψr

)
∩ R2[x ],

for even r ≥ 0. Taking r = 0, we obtain a relaxation for BQPP:

(BQPPLas) min λ s.t. λ− q(x) ∈ Γ0

Theorem

λ∗BQPPLas
≥ λ∗BQPPSS

≥ λ∗BQPPSS+
≥ z∗BQPP
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Computational Setup

All relaxations were implemented in Matlab 7.9.0
SeDuMi 1.3 was used to solve the conic programming problems
All computations were carried out on a 1200 MHz Sun Sparc
machine
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Computational Results for General BQPP Problems

For each size n
100 randomly generated instances
density (number of nonzero coefficients in the objective function)
between 20% to 100%.
the number of linear and quadratic constraints (m) varies from 1 to
n
2 .

We implemented Lasserre’s relaxation using our code and the cone
definition above.
The gaps (in %) are calculated as follows:

gap = 100× ubrelaxation − ubbest

ubbest
,

where the best upper bound is the one obtained by the (BQPPSS+)
relaxation.
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Computational Results for General BQPP

n m (BQPPSS+ ) (BQPPSS) (BQPPLas) (BQPPSOC)
Time Gap Time Gap Time Gap Time

40 1 78.18 1.66 56.30 34.89 34.59 29.97 33.07
5 122.37 2.33 67.54 36.38 44.66 28.18 37.47

20 306.31 5.71 88.80 50.60 48.27 38.60 44.11
50 1 268.93 0.68 179.74 5.12 112.49 15.16 48.72

5 397.34 3.44 193.86 17.71 122.32 39.05 117.75
25 1245.49 12.27 258.77 94.54 142.29 43.08 190.33

60 1 970.00 3.15 626.87 19.61 375.24 65.83 94.16
5 1169.37 3.69 663.09 40.75 397.93 39.75 183.34

30 5637.18 9.42 850.83 58.95 473.50 52.10 650.46
70 1 2793.31 0.93 2515.31 29.44 1214.23 31.51 165.63

5 3848.18 2.50 2532.18 53.64 1245.09 26.98 549.22
35 15420.53 14.85 2429.09 47.51 1446.99 46.99 1818.69
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Summary of Computational Results for General BQPP

(BQPPSOC) is the most computationally efficient relaxation in most
cases.
(BQPPSOC) frequently has better gaps than (BQPPLas)
With more linear constraints, (BQPPLas) is slightly more efficient
but its bounds are weaker than those provided by (BQPPSOC).
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In conclusion...

Semidefinite, conic and polynomial optimization is a very active
and exciting research area.
There are still numerous open questions, both theoretical and
algorithmic.
Furthermore, this area is ripe for real-world applications.

Angelika Wiegele will cover algorithms for SDP in this afternoon’s
lectures.

Let’s go have lunch!
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